FREQUENTLY ASKED QUESTIONS

 

How do LEDs work?

LEDs differ from traditional light sources in the way they produce light. In an incandescent lamp, a tungsten filament is heated by electric current until it glows or emits light. In a fluorescent lamp, an electric arc excites mercury atoms, which emit ultraviolet (UV) radiation. After striking the phosphor coating on the inside of glass tubes, the UV radiation is converted and emitted as visible light. An LED, in contrast, is a semiconductor diode. It consists of a chip of semiconducting material treated to create a structure called a p-n (positive-negative) junction. When connected to a power source, current flows from the p-side or anode to the n-side, or cathode, but not in the reverse direction. Charge-carriers (electrons and electron holes) flow into the junction from electrodes. When an electron meets a hole, it falls into a lower energy level, and releases energy in the form of a photon (light). The specific wavelength or color emitted by the LED depends on the materials used to make the diode. Red LEDs are based on aluminum gallium arsenide (AlGaAs). Blue LEDs are made from indium gallium nitride (InGaN) and green from aluminum gallium phosphide (AlGaP). “White” light is created by combining the light from red, green, and blue (RGB) LEDs or by coating a blue LED with yellow phosphor.

Glossary of LED Terms

This page defines common terms relating to solid-state lighting.
Solid-state lighting (SSL) technology uses semi-conducting materials to convert electricity into light. SSL is an umbrella term encompassing both light-emitting diodes (LEDs) and organic light emitting diodes (OLEDs).
Light-emitting diodes (LEDs) are based on inorganic (non-carbon based) materials. An LED is a semi-conducting device that produces light when an electrical current flows through it. LEDs were first developed in the 1960s but were used only in indicator applications until recently.
Organic light-emitting diodes (OLEDs) are based on organic (carbon based) materials. In contrast to LEDs, which are small point sources, OLEDs are made in sheets which provide a diffuse area light source. OLED technology is developing rapidly and is increasingly used in display applications such as cell phones and PDA screens. However, OLEDs are still some years away from becoming a practical general illumination source. Additional advancements are needed in light output, color, efficiency, cost, and lifetime.
General illumination is a term used to distinguish between lighting that illuminates tasks, spaces, or objects from lighting used in indicator or purely decorative applications. In most cases, general illumination is provided by white light sources, including incandescent, fluorescent, high-intensity discharge sources, and white LEDs. Lighting used for indication or decoration is often monochromatic, as in traffic lights, exit signs, vehicle brake lights, signage, and holiday lights.
Luminous efficacy is the most commonly used measure of the energy efficiency of a light source. It is stated in lumens per watt (lm/W), indicating the amount of light a light source produces for each watt of electricity consumed. For white high-brightness LEDs, luminous efficacy published by LED manufacturers typically refers to the LED chip only, and doesn’t include driver losses.
Correlated color temperature (CCT) is the measure used to describe the relative color appearance of a white light source. CCT indicates whether a light source appears more yellow/gold/orange or more blue, in terms of the range of available shades of “white.” CCT is given in kelvins (unit of absolute temperature).
Color rendering index (CRI) indicates how well a light source renders colors of people and objects, compared to a reference source.
RGB stands for red, green, and blue, the three primary colors of light. When the primaries are mixed, the resulting light appears white to the human eye. Mixing the light from red, green, and blue LEDs is one way to produce white light.
Phosphor conversion is a method used to generate white light with LEDs. A blue or near-ultraviolet LED is coated with a yellow or multichromatic phosphor, resulting in white light.
Common LED Types and Packages

 

Structure of a high-brightness LED

    LEDs come in two basic categories:
  • Low power LEDs commonly come in 5 mm size, although they are also available in 3 mm and 8 mm sizes. These are fractional wattage devices, typically 0.1 watt, operate at low current (~20 milliamps) and low voltage (3.2 volts DC), and produce a small amount of light, perhaps 2 to 4 lumens.
  • High power LEDs come in 1-3 watt packages. They are driven at much higher current, typically 350, 700, or 1000 mA, and—with current technology—can produce 40-80 lumens per 1-watt package.
  • High power LEDs come in many different shapes and sizes.

 

Energy Efficiency of White LEDs

The energy efficiency of LEDs is expected to rival the most efficient white light sources by 2010. But how energy efficient are LEDs right now? This section discusses various aspects of lighting energy efficiency and the rapidly evolving status of white LEDs. Click on the topics below for more information.

  • a) Luminous Efficacy

Energy efficiency of light sources is typically measured in lumens per watt (lm/W), meaning the amount of light produced for each watt of electricity consumed by the light source. This is known as luminous efficacy. DOE’s long-term research and development goal calls for white-light LEDs producing 160 lm/W in cost-effective, market-ready systems by 2025. In the meantime, how does the luminous efficacy of today’s white LEDs compare to traditional light sources? Currently, the most efficacious white LEDs can perform similarly to fluorescent lamps. However, there are several important caveats, as explained below.

  • b) Color Quality

The most efficacious LEDs have very high correlated color temperatures (CCTs), often above 5000K, producing a “cold” bluish light. However, warm white LEDs (2600K to 3500K) have improved significantly, now approaching the efficacy of CFLs. In addition to warmer appearance, LED color rendering is also improving: leading warm white LEDs are now available with color rendering index (CRI) of 80, equivalent to CFLs.

  • c) Driver Losses

Fluorescent and high-intensity discharge (HID) light sources cannot function without a ballast, which provides a starting voltage and limits electrical current to the lamp. LEDs also require supplementary electronics, usually called drivers. The driver converts line power to the appropriate voltage (typically between 2 and 4 volts DC for high-brightness LEDs) and current (generally 200-1000 milliamps or mA), and may also include dimming and/or color correction controls.

Currently available LED drivers are typically about 85% efficient. So LED efficacy should be discounted by 15% to account for the driver. For a rough comparison, the range of luminous efficacies for traditional and LED sources, including ballast and driver losses as applicable, are shown below.

  • d) Thermal Effects

The luminous flux figures cited by LED manufacturers are based on an LED junction temperature (Tj) of 25°C. LEDs are tested during manufacturing under conditions that differ from actual operation in a fixture or system. In general, luminous flux is measured under instantaneous operation (perhaps a 20 millisecond pulse) in open air. Tj will always be higher when operated under constant current in a fixture or system. LEDs in a well-designed luminaire with adequate heat sinking will produce 10%-15% less light than indicated by the “typical luminous flux” rating.

 

Comparing LEDs to Traditional Light Sources

Energy efficiency proponents are accustomed to comparing light sources on the basis of luminous efficacy. To compare LED sources to CFLs, for example, the most basic analysis should compare lamp-ballast efficacy to LED+driver efficacy in lumens per watt. Data sheets for white LEDs from the leading manufacturers will generally provide “typical” luminous flux in lumens, test current (mA), forward voltage (V), and junction temperature (Tj), usually 25 degrees Celsius. To calculate lm/W, divide lumens by current times voltage. As an example, assume a device with typical flux of 45 lumens, operated at 350 mA and voltage of 3.42 V. The luminous efficacy of the LED source would be:

  • 45 lumens/(.35 amps x 3.42 volts) = 38 lm/W

To include typical driver losses, multiply this figure by 85%, resulting in 32 lm/W. Because LED light output is sensitive to temperature, some manufacturers recommend de-rating luminous flux by 10% to account for thermal effects. In this example, accounting for this thermal factor would result in a system efficacy of approximately 29 lm/W. However, actual thermal performance depends on heat sink and fixture design, so this is only a very rough approximation. Accurate measurement can only be accomplished at the luminaire level.

 

Application Efficiency

Luminous efficacy is an important indicator of energy efficiency, but it doesn’t tell the whole story, particularly with regard to directional light sources.

Due to the directional nature of their light emission, LEDs potentially have higher application efficiency than other light sources in certain lighting applications. Fluorescent and standard “bulb” shaped incandescent lamps emit light in all directions. Much of the light produced by the lamp is lost within the fixture, reabsorbed by the lamp, or escapes from the fixture in a direction that is not useful for the intended application. For many fixture types, including recessed downlights, troffers, and under-cabinet fixtures, it is not uncommon for 40-50% of the total light output of the lamp(s) to be lost before it exits the fixture.

LEDs emit light in a specific direction, reducing the need for reflectors and diffusers that can trap light, so well-designed fixtures, like the undercabinet light shown below, can deliver light more efficiently to the intended location.

  • This field is for validation purposes and should be left unchanged.

© 2017 Sunfor Technologies All rights reserved

EnglishFrançais